Chlorophyll-a#

This resource will be updated on 9/11.

import numpy as np
import matplotlib.pyplot as plt

Physical Basis#

The Chlorophyll-a Absorption Spectrum#

# read in the spectrum
spectrum = np.genfromtxt('../data/chla_absorption_spectrum.txt', delimiter='\t')
spectrum[:,1] *= 1/np.max(spectrum[:,1]) # normalize

# make a plot
fig = plt.figure(figsize=(8,4))
plt.plot(spectrum[:,0], spectrum[:,1], color='forestgreen')
plt.xlabel('Wavelength (nm)')
plt.ylabel('Relative Absorption\n(Fraction of Maximum Absorption)')
plt.grid(linestyle='--', linewidth=0.5, alpha=0.5)
plt.title('Chlorophyll-a Absorption Spectrum')
plt.gca().set_xlim([380,700])
plt.show()
../_images/44bb9b5a030da43540983473598f69b3696c7f5fd8bec9b89ed7ab36a3fc9b2b.png

The data from the above plot was obtained from Prahl and Jacques [2018].

The Water Absorption Spectrum#

We can compare the above plot of absorption for chlorophyll-a to that of water to visualize the differences:

# read in the spectrum
spectrum = np.genfromtxt('../data/water_absorption_spectrum.txt',delimiter='\t')

# make a plot
fig = plt.figure(figsize=(8,4))
plt.plot(spectrum[:,0], spectrum[:,1], color='darkblue')
plt.xlabel('Wavelength (nm)')
plt.ylabel('Absorption\n(1/cm)')
plt.grid(linestyle='--', linewidth=0.5, alpha=0.5)
plt.title('Water Absorption Spectrum')
plt.gca().set_xlim([380,700])
plt.gca().set_ylim([-0.0001,0.0065])
plt.show()
../_images/e9c3a084c09cd7dea6934a9130d9c3138f4ed949e5a3303e8cc0cce944487034.png

Chlorophyll-a Algorithms#

Chlorophyll-a Products#